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Many sensory systems adapt their input-output relationship to
changes in the statistics of the ambient stimulus. Such adaptive
behavior has been measured in a motion detection sensitive
neuron of the fly visual system, H1. The rapid adaptation of the
velocity response gain has been interpreted as evidence of optimal
matching of the H1 response to the dynamic range of the stimulus,
thereby maximizing its information transmission. Here, we show
that correlation-type motion detectors, which are commonly
thought to underlie fly motion vision, intrinsically possess adaptive
properties. Increasing the amplitude of the velocity fluctuations
leads to a decrease of the effective gain and the time constant of
the velocity response without any change in the parameters of
these detectors. The seemingly complex property of this adapta-
tion turns out to be a straightforward consequence of the multi-
dimensionality of the stimulus and the nonlinear nature of the
system.

insect � model � motion vision

Adaptation is a widespread phenomenon in biological sys-
tems. Generally it may be defined as a change in the

sensitivity of the system to the current stimulus after a change in
the statistics of the input signal, making the system better suited
to cope with the present environment. In particular, the gain of
the input-output relation of sensory systems is often modified,
enabling them to convey information about the relevant stimulus
parameters despite changes in the statistics of the sensory
environment. Such adaptation has been observed in the well
studied motion detection system that underlies f ly motion vision
(1–3). In the motion sensitive neuron, H1, the variance of a
band-limited Gaussian velocity waveform affects the neuron’s
velocity response relationship. This response exhibits a rather
steep slope around zero velocity for small velocity f luctuations,
whereas for large velocity fluctuations this slope was found to be
substantially reduced (4–6). Gain control in H1 has been
interpreted as adaptive rescaling set to match the dynamic range
of the response to that of the stimulus and used to maximize the
system’s information transmission. However, the mechanism
underlying this adaptation has not been elucidated.

Adaptation in sensory systems often occurs on a much slower
time scale than the duration of the system’s impulse response,
indicating the presence of a special mechanism that slowly
changes the system’s response parameters integrating informa-
tion about the stimulus history. H1 gain adaptation takes place
on a surprisingly fast time scale: it occurs within 1 s after
switching from one stimulus condition to another (5). Fast
adaptation has also been observed in other neuronal sensory
systems (7–9), not only in the response gain, but also in its time
course (7). When the adaptation operates on the same time scale
as the response itself, the separation between the mechanisms
underlying the adaptation and those that give rise to the response
becomes ambiguous, suggesting that the adaptation emerges
naturally from the salient response properties of the system.
Pursuing this hypothesis, we asked whether gain adaptation in fly
motion vision could be the outcome of the intrinsic properties of
the motion detection mechanism, rather than a special mecha-

nism that changes the parameters of the system. To answer this
question, we studied theoretically the adaptive properties of
correlation-type motion detectors, known as Reichardt detec-
tors, which mimic many response properties of fly motion-
sensitive interneurons in surprising detail (10–14). Here, we
show that changes in the response gain and the response time
course can be explained by the intrinsic features of the motion
detector. We argue that this automatic gain adaptation results
from the inherent nonlinearity of the response of the system to
a multidimensional stimulus. Thus, automatic gain control may
be an integral feature of other sensory systems.

Materials and Methods
Experiments. Flies were stimulated by a moving sinusoidal wave
grating (22° spatial wavelength, 63% contrast, 14 cd�m2 mean
luminance), with a low-pass filtered white noise velocity profile.
The grating was presented on a cathode ray tube (Tektronix 608),
7.5 cm in front of the fly, by means of a Picasso image synthesizer
(Innisfree, Cambridge, MA) at a frame rate of 200 Hz. The
screen had a horizontal and vertical extent of 65° and 80°,
respectively, as seen by the fly. Spikes were recorded extracel-
lularly with a tungsten electrode inserted in the lobula plate (Fig.
1A), fed through a threshold device, and transferred at 1 kHz
temporal resolution to a computer (Pentium II-based PC with a
DAS16 I�O board from MetraByte, Tauton, MA). For each
stimulus condition, �100 sweeps of identical stimuli, each with
a duration of 9 s, were presented with a 1-s pause between them.
Stimulus-response functions were constructed for a time delay
equal to the maximum of the cross-correlation between the
velocity waveform and the response poststimulus time histogram
(4 ms binwidth). The slope of this function was determined by
using a velocity range from �0.25 to 0.5 times the standard
deviation of the velocity �.

A Model of Motion Detection in H1. The stimulus. Similar to the
experiment, the stimulus in the model consists of a moving sine
grating of one wavelength, whose velocity v(t) is expressed as a
temporal frequency (in units of Hz) that reflects the number of
spatial periods passing 1 image location per s. The velocity
profile is generated by a low-pass filtering of white noise. We
write the velocity autocorrelation as �2c(t) where c(t) �
exp(��t���0) is the normalized autocorrelation, �0 is its time
constant, and � is the velocity’s standard deviation. Associated
with c(t) we define two useful quantities:

C�t�, t� � �
t�

t

d�c���

[1]

��t� � t� � �
t�

t

d��
t�

t

d��c�� � ���.
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Reichardt detectors. To understand how the motion vision system
reacts to changes in the statistics of the stimulus velocity, we
modeled H1 by an array of local motion detectors known as
Reichardt detectors (1–3) (Fig. 1B). Reichardt detectors extract
the direction of motion by multiplying the brightness signals from
neighboring image locations after asymmetric temporal filtering.

This operation is done twice in mirror-symmetrical subunits. As
a final step, the output signals of the two subunits are subtracted.
By following refs. 10–14, we used a Reichardt detector with a
low-pass filter (LPF) in one input line to the multiplier with a
short time constant (�L � 0.02 s) and a high-pass filter (HPF) in
the cross arm, with a time constant of �H � 0.5 s (Fig. 1B). The

Fig. 2. Automatic gain adaptation to variance, correlation time, and acceleration. Normalized gain (G(t)�GSS, see Materials and Methods) is plotted as a function
of the stimulus standard deviation for three different stimulus correlation times �0 (0.1, 0.5, and 2.0 s). Normalized gain from experimental data (A) and the array
of motion detectors with identical parameters (B) as in Fig. 1. Normalized gain of the H1 cell (C) and the motion detector model (D) as a function of the stimulus
standard deviation divided by the correlation time constant, which is a measure of stimulus acceleration.

Fig. 1. Input-output relationships. (A) Depiction of the fly
motion-sensitive interneuron H1. The fly brain is shown in a
frontal section. H1 is seen to connect the lobula plates from
both hemispheres. The dendrite is to the right; axonal
ramifications are to the left. (B) A diagrammatic represen-
tation of the Reichardt detector used in the analysis. (C)
Input-output curves from the H1 cell for three different
standard deviations of the velocity fluctuations (1, 5, and 10
Hz), all with a correlation time of �0 � 0.1 s. (D) Input-output
curves from a simulated one-dimensional array of 25
Reichardt detectors responding to the same stimuli as used
in the experiments.
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output of an array of local Reichardt detectors covering the
entire visual field is given by

r�t� � 2�
0

�

d��
0

�

d��K��, ���sin��x� t � � , t � ���� . [2]

The time response, K(�, ��) � KL(�)KH(��) consists of the
product of the LPF and HPF, which are given by KL(�) �
exp(����L)��L and KH(�) � d(�) � exp(����H)��H, � 	 0,
respectively. �x(t, t�) is the total angular displacement of the
visual pattern from time t to time t� �x(t, t�) � 2�
t

t�d�v(t).
�x(t, t�) is Gaussian distributed with zero mean and a variance
�[�x(t�, t)]2� � (2��)2�(t� � t) (see Eq. 1). An important quantity
for this analysis is the time-lagged cross-correlation between
r and v, crv(t) � �r(t� 
 t)v(t�)�, which, by using Eqs. 1 and 2,
reduces to

crv�t� � 4��2�0�
0

�

d��
0

�

d��K��, ���C�t � ��, t � ��

�exp��2�2�2���� � ��� . [3]

The Velocity Response Function. We define the response of the
system Rt(v) to a velocity v at time lag t as the average of
the detector output r at time t, subject to the condition that the
velocity at time 0 is equal to v. We call this response the
‘‘conditional response.’’ Fixing the velocity at time 0 to v causes
the mean of �x(t�, t) to change from zero to 2�vC(t�, t). Con-
comitantly, the variance of �x(t�, t) is reduced to (2��)2�̃(t�, t)
where �̃(t�, t) � �(t� � t) � (C(t, t�))2 (see Eq. 1). Note that the
conditional mean is proportional to the velocity at time 0,
whereas the conditional variance is proportional to the variance
of the velocity profile. By averaging r(t) (Eq. 1) with the
conditional statistics, we obtain the conditional response:

Rt�v� � 2�
0

�

d��
0

�

d��K��, ���sin�2�vC� t � � , t � ����

�exp[�2�2�2�̃� t � �� , t � ��]. [4]

From Eq. 4, the gain of the response G(t) � �Rt��v�v�0 can be
calculated directly. For concreteness, we will present the gain at
time t, which maximizes crv(t). For purposes of comparison, the
gain in this study is normalized by the steady-state gain, which is
the slope of the stimulus-response function at zero velocity,
measured when the system has a stable output value in response
to a constant stimulus. For the model in Fig. 1b, the steady-state
gain is GSS � 4��H, which can be deduced from the slope of Eq.
4 in the limit of large �0.

Results
Automatic Gain Adaptation in the Motion Detection System. Fig. 1C
shows the experimentally measured velocity-response curve for
different values of stimulus ensemble variance. In line with
previous results, the H1 response function exhibits a significant
increase in its gain when the stimulus variance is reduced.
Numerical evaluation of the model velocity response function,
Eq. 4, is shown in Fig. 1D for several values of the stimulus
variance. Importantly, the model response is strongly influenced
by the variance, increasing its gain when the stimulus range of
values decreases. This behavior is expected from adaptive sys-
tems, but here it occurred without any change in the system’s
parameters. The origin of this behavior can be understood by
inspection of Eqs. 1–4. The output of the motion detector at any
time t is a sum of contributions from the stimuli at previous

times, through �x(t � �, t � ��) (Eq. 2). However, the contri-
bution of the stimulus history to the actual response is reduced
by the stimulus fluctuations, as is indicated by the exponential
factor in Eq. 4. Because the amplitude of these fluctuations is
proportional to �, increasing � suppresses the contribution to the
response from previous times, resulting in a decrease in the total
response.

An important prediction of our theory is that the velocity-
response function should depend not only on the stimulus
variance but also on its time constant, �0. Specifically, for a given
�, increasing �0 increases C(t�, t) and decreases �̃(t�, t), leading
to an increase of the response and its gain (see Eq. 4). When �0
is large compared with the motion detector time constants �L and
�H, the stimulus is essentially constant during the response
period; hence, the gain approaches the steady-state value. These
results are summarized in Fig. 2A, which presents the value of the
velocity response gain as a function of the fluctuation amplitude,
�, for several values of �0. As shown in Fig. 2B, the model
predictions agree nicely with the experimental results for the
gain of the H1 velocity response for the same values of stimulus
parameters. Although increasing � and �0 have opposite effects
on the gain, the reduction of the gain by increasing � is only
partially offset by a concomitant increase in �0. Thus, as can be
concluded from Fig. 2 C and D, the gain depends not only on the
acceleration ���0 but also on the higher-order time derivatives
of the velocity profile.

Adaptation of the Motion Detection Time Scale. We also examined
whether our motion detection model exhibits automatic changes
in the time course of its output, in response to changes in the
variance of the stimulus. We addressed this question by calcu-

Fig. 3. Adaptation of the motion detection time scale. Stimulus-response
cross-correlations from experimental data (A) and from the model (B) (see Eq.
3). In both cases, the correlation time of the stimulus is held constant at 0.1 s,
and the standard deviation of the stimulus shown here are 0.5 (black) and 5.0
Hz (red). Dotted lines represent the normalized stimulus autocorrelation
function for each standard deviation.
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lating the time-delayed cross-correlation of the motion detection
output and the stimulus, crv(t) (Eq. 3) for different values of �.
Remarkably, the time dependence of the stimulus-response
correlation is sensitive to the value of �, as shown in Fig. 3 A and
B. For small �, crv(t) is peaked at the positive value of delay and
has a large width around it. On the other hand, for large �, crv(t)
has a narrow, nearly symmetrical profile at about zero delay. The
experiments show a larger shift in the peak of the cross-
correlation than the model. This finding may be due to an
additional fixed delay between the retinal input and the output
of the H1 cell that is absent in the model. As in the case of the
gain, the automatic shortening of the time scales of the motion
detection response originates from the fact that, as the velocity
variance increases, the contributions to the response from
previous times are suppressed. Hence, whereas for small �, the
time constants of the motion detector temporal filters contribute
substantially to the time course of the output, at large �, the time
scale in the response is just the time constant of the correlations
in the stimulus itself, as shown in Fig. 3.

Mechanism of Automatic Gain Control by Stimulus Variance. Contrary
to the commonly accepted view that gain control requires
manipulation of the response parameters, gain control occurs in
a Reichardt motion detector without changing any of the sys-
tem’s parameters. This finding raises the interesting question of
whether automatic gain adaptation to stimulus variance is spe-
cific to motion detection or whether it could be a more general
feature at work in other sensory systems. In fact, we argue that
our results are a natural consequence of the inherent high
dimensionality of the stimulus and the intrinsic nonlinearity of
the response. To demonstrate this point, we present a simple
abstract model neuron responding nonlinearly to a multidimen-
sional stimulus (Fig. 4A). The stimulus ensemble consists of
several correlated multivariate Gaussian variables, si. The cor-
relations between the different si may originate from the statis-
tics of the sensory sources or from a mixing of uncorrelated
stimuli by preceding neural filtering. The si pass through non-
linear squashing transfer functions, f(si), and are summed lin-
early at the output stage. A simple one-dimensional account of

the response of the neuron is generated by evaluating the average
output of the neuron conditioned on fixing one of the stimulus
variables, say s1. Changing the value of s1 modifies the residual
probability distribution of the other stimulus variables (Fig. 4B).
Thus, the neuron’s response to s1 consists not only of the direct
response f(s1) but also of contributions coming from the other
stimulus variables f(si) (Fig. 4C). This contribution varies with
both the amplitude of the stimulus fluctuations as well as with
the amount of correlations between s1 and si. Increasing the
amplitude and decreasing the correlations decrease the gain of
the indirect response (Fig. 4D), and thereby also that of the total
response. The degree of this gain control depends on the number
of stimulus variables, si, and the strength of their correlations
with s1. In the case of the motion detection, the different si
corresponds to the velocities (or displacements) at different
times, with correlations that depend on their time difference
relative to �0. The nonlinearity corresponds to the dependence
of the response on the global velocity signal (e.g., sinusoidal in
the present experiment, see Eq. 1). This result explains both the
decrease of the gain of the motion detector with increasing � and
the increase of the dynamic gain with increasing correlation time
of the stimulus, �0. The generic nature of the architecture of Fig.
4 suggests that a similar mechanism may underlie other phe-
nomena of fast adaptation in sensory systems, such as the fast
component of contrast adaptation in the vertebrate retina (12).

Discussion
Gain control in H1 and other sensory systems has often been
considered from a ‘‘black-box’’ type approach as reflecting the
matching of the dynamic range of the response of the sensory
system to the dynamic range of the stimulus, thereby optimizing
the information transmission of the system (4, 5). Our work
shows that by considering the internal structure of the black box,
one obtains a richer understanding of its adaptive behavior.
First, we have shown that correlation-based motion detection
systems exhibit gain control of their velocity-response curve that
does not require any change in the system parameters. By
analytical evaluation of a model motion detection system, we
show that increasing the amplitude of the velocity fluctuations

Fig. 4. Mechanism for automatic gain control. (A) Sche-
matic representation of a model neuron responding non-
linearly to a multidimensional stimulus. In this example, we
chose five Gaussian distributed stimulus components, with
identical variance �2 and correlation coefficients, c. f(s) �
tahn(s). (B) Effect of one stimulus component, s1, on the
probability distribution of a second component, s2. Fixing
the value of s1 changes the distribution of s2 because the two
variables are correlated. The conditional distribution is nar-
rower than the original by a factor �1 � c2, where c is the
correlation coefficient of s1 and s2 and is centered on cs1.
Here, c � 0.5. The dashed curve is the original Gaussian
probability density of s2 with � � 1. The solid curves are the
conditional densities with s1 � 0 (blue), �5.0 (red), and 5.0
(green). (C) Contribution of s2 to the response of s1. The
indirect response is computed by averaging f(s2) (green
curve) with the conditional distribution of s2 with (c � 0.5,
� � 10, red), (c � 0.5, � � 1, black), and (c � 0.8, � � 1, blue).
In all cases, s1 � 0.5. (D) Full response of the neuron to s1,
consisting of the direct contribution f(s1) and the indirect
contributions from the other four units (similar to that
described in C). Parameters are c � 0.5, � � 1, black; c � 0.5,
� � 10, red; and c � 0.8, � � 1, blue.
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suppresses the contribution of the stimulus past, which leads to
a marked reduction in the response gain. Analyzing a more
general network model of sensory processing, we demonstrate
that this automatic gain control is due to the intrinsic nonlin-
earity of the system and the high dimensionality of the stimulus
ensemble. Our theory furthermore predicts that the stimulus
statistics also affect the effective time scale of the system.
Increasing the stimulus variance shortens the time scale of the
motion detection response and reduces it to the correlation time
of the stimulus fluctuations. The predicted modulation of the
gain and the time course of the velocity response by the stimulus
statistics is in qualitative agreement with the behavior of the fly
visual interneuron H1.

Our theory reveals the natural limitations of the system’s gain
control. As is evident from Fig. 2B, although the gain increases
as the stimulus standard deviation, �, decreases, it is predicted
to saturate smoothly to a finite value at low �. The predicted gain
saturation is in accordance with the experimental results (Fig.
2A). In contrast, the naı̈ve information theoretic approach
predicts that the adaptive gain should increase as the inverse of
�, for low �. Finally, our theory relates the changes in the gain
and time constant to the intrinsic nonlinearity of the system.
Therefore, changing the form of the nonlinearity may have
significant effects on the magnitude of the resultant adaptive
response. Interestingly, in the H1 system, the nonlinearity can be
modified by changing the wave form of the moving grating itself.
Thus, we predict that the fast adaptation in H1 should be
sensitive to changes in the spatial pattern of the light stimulus.

H1 exhibits a variety of adaptation phenomena in addition to
those described in this work. For instance, the time constant of
its impulse response shortens when the transient stimulus is
applied after a previous step velocity. The sensitivity of this
adaptation to the contrast of the adaptive stimulus and its local
nature may indicate that the present model of motion detection
does not account for this phenomenon. It should be noted that
our model of H1 processing is an analog model, which does not
include spiking outputs. Thus, it can be considered as a model
of the input to H1 (15, 16). The subsequent transformation of
this signal to spiking discharge represents an additional layer of
nonlinearity that may also contribute to the fast adaptation
studied in this work and other adaptation phenomena in H1.
Indeed, recent modeling work has shown that spike generation
nonlinearity can give rise to certain forms of fast adaptation
(17, 18).

The nervous system reveals a variety of adaptive behaviors
that undoubtedly involve multiple mechanisms operating on
different time scales. This work shows that adaptive behaviors
that operate on the same time scales as the response itself may
be the natural outcome of the inherent nonlinearities of the
system.
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